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Reflection Characteristics of a PML
With a Shallow Corrugation

Marina E. Inchaussandague, Miriam L. Gigli, and Ricardo A. Depine

Abstract—The constitutive characteristics of anisotropic mate-
rials can be exploited to construct absorbers that provide reflec-
tionless interfaces for waves at arbitrary angles of incidence. In
this paper, we investigate how a weak corrugation affects the re-
flectivity of the anisotropic perfectly matched absorber developed
by Sacks et al. for a flat interface. To do so, we develop a Rayleigh
method to calculate the fields diffracted at the periodically corru-
gated boundary of an anisotropic absorber with constant consti-
tutive tensors, which correspond to a planar (Cartesian) perfectly
matched layer. We present numerical results in the nondiffractive
regime (where only a specularly reflected wave can propagate) for
sinusoidal corrugations with different groove height-to-period ra-
tios. Our results show that the reflectivity of the anisotropic ab-
sorber near normal incidence remains very low (less than 0.4% for
a 10% modulation), whereas it changes dramatically near grazing
incidences.

Index Terms—Absorber, anisotropy, perfectly matched layer
(PML), reflectivity, scattering.

I. INTRODUCTION

THE perfectly matched layer (PML) approach is a pow-
erful formulation to solve unbounded electromagnetic

problems. Two types of PMLs are to be distinguished: the
first, introduced by Berenger [1], [2], is based on a splitting of
each Cartesian field component into two subcomponents and
the second, given by Sacks et al. [3], is based on anisotropic
material properties chosen in such a way that a plane interface
between the anisotropic medium and free space is perfectly
reflectionless for any angle of incidence, frequency, and
polarization. Unlike Berenger’s PML, the anisotropic perfectly
matched absorber has the advantage of not requiring any
modification of Maxwell’s equations.

The original PML concept applied to only Cartesian coordi-
nates planar interfaces. To extend its range of applicability, other
reflectionless absorbers have been developed for nonplanar in-
terfaces, such as, for example, two-dimensional (2-D) cylin-
drical, three-dimensional (3-D) cylindrical, and 3-D spherical
interfaces [4]–[6]. For a general concave boundary, a conformal
PML with constitutive tensors dependent on the local radii of
curvature of the surface has been developed in [7]. However,
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Fig. 1. View of the principal section of the grating.

the behavior of the conformal PML is strongly dependent of
the local geometry of the termination since, for convex surfaces
(negative local radius), the analysis is dynamically unstable [8].
Due to this limitation, the concept of a conformal PML cannot
be applied to the study of boundaries, such as the rough interface
considered here, which are neither concave nor convex. Since
the extension of the Cartesian PML concept to rough boundaries
could be useful for the analysis of devices combining stratifica-
tion and corrugation, in this paper we investigate how a weak
corrugation affects the reflectivity of the otherwise reflection-
less anisotropic absorber with constant constitutive tensors. To
do so, we develop a Rayleigh method to calculate the fields
diffracted at the periodically corrugated boundary between free
space and an anisotropic absorber. This method is based on the
assumption that the electromagnetic fields in the region between
the grooves can be written as plane-wave expansions [9]. Al-
though not rigorous, Rayleigh methods have proven to give very
good results for corrugated isotropic [10], [11], gyroelectromag-
netic [12], and anisotropic [13], [14] gratings, even for groove
height-to-period ratios greater than 0.14, the limit of validity of
the hypothesis for perfect conductors with sinusoidal corruga-
tion.

II. THEORY

We consider a periodically corrugated interface given by
( is the period), separating an isotropic

medium from an anisotropic absorbing medium (Fig. 1). The
-axis is placed along the grooves and the -axis, perpendic-

ular to the mean surface of the grating, is directed toward the
isotropic medium. Harmonic time dependence is
assumed and omitted throughout the paper.

The isotropic region ( ) is characterized by the fol-
lowing constitutive relations:

(1)

(2)
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where and are the permittivity and permeability of the
dielectric medium and and are, respectively, the permit-
tivity and permeability of the vacuum.

The absorbing anisotropic side ( ) is characterized
by

(3)

(4)

where is the dielectric tensor and is the permeability tensor
of the material. Following Sacks et al. [3], we consider the case
in which and are diagonal tensors given by

(5)

(6)

In this case and when

(7)

all the incident power is absorbed if the interface is flat [3].

A. Dispersion Relation and Fields in the Anisotropic Side

The electromagnetic fields in the anisotropic medium verify

(8)

(9)

for TE polarization and

(10)

(11)

for TM polarization. It follows that both polarization modes are
ruled by the same differential equation

(12)

where for TE modes or for TM modes. It can
be seen that plane-wave solutions of this equation in the form

(13)

verify the following dispersion relation:

(14)

B. Incident Waves

The grating is illuminated from the isotropic side by a plane
wave with its incident wave vector contained in the – -plane
and forming an angle with the -axis

(15)

with

(16)

(17)

This wave is arbitrarily polarized and can be decomposed into
a linear combination of TE and TM modes. These polarization
modes can be solved separately since, due to the high symmetry
of tensors and , the boundary conditions do not couple TE
and TM modes.

C. Incident and Diffracted Fields

1) Isotropic Side: The total fields and in the region
above the grating grooves ( ) can be written as
a superposition of plane waves. These plane waves may be de-
composed into TE and TM modes and the component of the
fields can be expressed, for both modes, by the following same
expression:

(18)
where

for the TE mode
for the TM mode

(19)

is the incident amplitude, are the unknown complex
amplitudes of the fields diffracted into the isotropic medium,
and are the diffracted wave vectors with

(20)

(21)

The and components of the electric and magnetic fields are
then derived through Maxwell equations.

2) Absorbing Anisotropic Side: The electromagnetic
fields and in the region below the grating grooves
( ) are also represented by plane-wave expansions
in terms of TE and TM modes. The component of the fields
for each mode can be written as follows:

(22)

where

for the TE mode
for the TM mode

(23)

are the unknown complex amplitudes of the fields dif-
fracted into the absorbing anisotropic medium and

(24)

According to the dispersion relation (14)

(25)
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The square root in (25) is selected in such a way that
(if is complex) or that (if it is real).

The and components of the electric and magnetic fields
are then derived from (8) and (9) (for the TE mode) or (10) and
(11) (for the TM mode).

D. Boundary Conditions

The boundary conditions require the continuity of the tangen-
tial components of and at

(26)

(27)

where is a unit vector normal to the interface.
These boundary conditions do not couple for TE and TM

modes. By expressing the fields in (26) and (27) in terms of
their components and their derivatives—(8)–(11) for the
anisotropic absorbing medium—the following equations are
obtained:

(28)

(29)

where and are defined for each mode by (19) and (23).
Thus, it can be noted that the boundary conditions take the same
expressions for both modes; besides, verifies the Helmholtz
equation and is ruled by (12), which are independent of the
polarization. Therefore, the results will be the same for TE or
TM modes.

E. Rayleigh Method

At this stage, we invoke the Rayleigh hypothesis, i.e., we as-
sume that expansions (18) and (22), strictly valid outside the
grooves, can be replaced into the boundary conditions (28) and
(29). This assumption is known to give good results for gratings
with shallow grooves. It holds exactly for perfectly conducting
sinusoidal gratings with groove height-to-period ratios less than
0.144. However, good results have also been obtained for deeper
gratings even when anisotropic materials are involved [13], [14].
To calculate the amplitudes of the diffracted fields and
in terms of the amplitudes of the incident fields, we project the
boundary conditions into the Rayleigh basis ,
thus obtaining a system of linear equations, with the amplitudes

and as unknowns.
The method described above has been implemented numer-

ically. Our code is, in principle, able to deal with any single
valued function for the grating profile, but previous studies
about the Rayleigh hypothesis [15] show that its limit of validity
is highly dependent on the shape of the corrugation. For the ex-
amples shown below, we have selected sinusoidal gratings with

. This kind of profile was chosen not
only because it is frequently found in practical cases, but also be-
cause its performance in Rayleigh methods—either for isotropic
or anisotropic gratings—is well documented [10]–[14], a fact

Fig. 2. Normalized reflected power as a function of the angle of incidence
for �=d = 2 and several values of h=d. Incidence is from vacuum into an
anisotropic absorbing medium with a = 1 + 3i.

Fig. 3. Normalized reflected power as a function of the angle of incidence
for �=d = 3 and several values of h=d. Incidence is from vacuum into an
anisotropic absorbing medium with a = 1 + 3i.

that gives us confidence about the adequacy of this formalism
for the situations that will be considered in Section III.

III. RESULTS

In order to analyze how a shallow corrugation affects
the reflectionless and totally absorbing characteristics of a
vacuum–PML interface, we have used the theory sketched
above for the case of sinusoidal gratings.

In Figs. 2 and 3, we plot the power reflected by the
surface—either for TE or TM polarization, as it was ex-
plained above—as a function of the angle of incidence
when the height-to-period ratio ( ) is varied in the range

. We restrict our study to the nondiffrac-
tive-regime wavelength-to-period ratio , where only
the specularly reflected wave can be propagated. Fig. 2 shows
the results for and Fig. 3 shows the results for

. It can be seen that, for angles of incidences
(for ) or (for ), the weakly corrugated
surface absorbs most of the incident power, thus behaving
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Fig. 4. Normalized reflected power as a function of h=d for � = 65 and
several values of �=d. Incidence is from vacuum into an anisotropic absorbing
medium with a = 1 + 3i.

Fig. 5. Normalized reflected power as a function of h=d for � = 75 and
several values of �=d. Incidence is from vacuum into an anisotropic absorbing
medium with a = 1 + 3i.

practically like a PML. For example, the reflectivity of the
anisotropic absorber at normal incidence is lower than 0.4%
for .

On the other hand, for greater values of , the reflected power
increases considerably. For example, Fig. 2 shows that over 40%
of the incident power is reflected for and .
In Fig. 3, for the same angle of incidence, less than 10% of the
incident power is reflected, while it exceeds 20% for .
By comparing Figs. 2 and 3 for a fixed angle of incidence and
for the same value of , we observe that the reflectivity of the
surface decreases with the wavelength. For example, for

and , the reflectivity is less than 10% of the
incident power for (Fig. 3), whereas for
(Fig. 2), it increases four times.

In order to better analyze the influence of corrugation height
on reflectivity, we have plotted the reflected power as a function
of in the range for several wavelengths and
for two values of the angle of incidence: (Fig. 4) and

(Fig. 5). These values were chosen in the near grazing

incidence region, where the reflected power differs significantly
from that of the flat surface.

From these figures, we observe that the reflectivity increases
with , although for very shallow corrugations ( ),
the behavior of the surface remains very similar to that of a
PML. In particular, Fig. 4 shows that, for , the reflected
power never exceeds 25% of the incident power for the wave-
lengths considered here, whereas Fig. 5 shows that the reflected
power can increase to approximately 60% of the incident power
for and for corrugation heights . This latter
situation considerably differs from that of a PML. We also ap-
preciate that higher values of correspond to lower values of
the reflected power, a fact already observed in Figs. 2 and 3.

Although not shown in these figures, our numerical results
confirm that for , the reflected power is zero, with an
error lower than 10 .

IV. CONCLUSIONS

We have studied the effects of a periodic corrugation on the
reflectivity of a flat boundary between free space and a PML
anisotropic material. Using a Rayleigh method, we have ob-
served that, for a corrugation height-to-period ratio
and for angles of incidence lower than 40 , the corrugated sur-
face can still be considered a very good reflectionless absorber,
although this is not the case for higher values of the angle of in-
cidence, where nearly all the incident power may be reflected. In
particular, our results show that the reflectivity of the anisotropic
absorber near normal incidence remains lower than 0.4% for
a 10% modulation. These results indicate that the PML con-
cept, originally developed for planar interfaces, can be extended
straightforwardly (without changing the constitutive relations
of the anisotropic absorber) to weakly corrugated surfaces in
problems involving fields with spatial harmonics concentrated
around the region corresponding to normal incidence.
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